7 research outputs found

    Electronic band structure of GaAs/AlxGa1−xAs superlattice in an intense laser field

    Get PDF
    ABSTRACT: We perform theoretical calculations for the band structure of semiconductor superlattice under intense high-frequency laser field. In the frame of the non-perturbative approach, the laser effects are included via laser-dressed potential. Results reveal that an intense laser field creates an additional geometric confinement on the electronic states. Numerical results show that when tuning the strength of the laser field significant changes come in the electronic energy levels and density of states

    The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1−xInxNyAs1−y/GaAs quantum well

    Get PDF
    ABSTRACT: Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations

    Nonlinear optical properties of asymmetric n-type double

    No full text
    The effect of non-resonant intense laser field on the intersubband-related optical absorption coefficient and refractive index change in the asymmetric n-type double δ-doped GaAs quantum well is theoretically investigated. The confined energy levels and corresponding wave functions of this structure are calculated by solving the Schrödinger equation in the laser-dressed confinement potential within the framework of effective mass approximation. The optical responses are reported as a function of the δ-doped impurities density and the applied non-resonant intense laser field. Additionally, the calculated results also reveal that the non-resonant intense laser field can be used as a way to control the electronic and optical properties of the low dimensional semiconductor nano-structures

    Effects of an intense, high-frequency laser field on bound states in Ga1-xInxNyAs1-y/GaAs double quantum well

    No full text
    Within the envelope function approach and the effective-mass approximation, we have investigated theoretically the effect of an intense, high-frequency laser field on the bound states in a Ga (x) In1 - x N (y) As1 - y /GaAs double quantum well for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave functions related to these bound states in Ga1 - x In (x) N (y) As1 - y /GaAs double quantum well are investigated as a function of the position and laser-dressing parameter. Our numerical results show that both intense laser field and nitrogen (indium) incorporation into the GaInNAs have strong influences on carrier localization
    corecore